ANNEXURE I

FOR DIPLOMA HOLDERS in ENGINEERING

MATHEMATICS (Common Syllabus)

Unit-I Matrices:

Matrices of 3rd order: Types of matrices-Algebra of matrices-Transpose of a matrixSymmetric, skew symmetric matrices-Minor, cofactor of an element-Determinant of a square matrix-Properties-Laplace's expansion-singular and non singular matrices-Adjoint and multiplicative inverse of a square matrix-System of linear equations in 3 variables-Solutions by Crammer's rule, Matrix inversion method,-Gauss-Jordan methods.
Partial Fractions: Resolving a given rational function into partial fractions.

Unit -II:

Trigonometry: Properties of Trigonometric functions - Ratios of Compound angles, multiple angles, sub multiple angles - Transformations of Products into sum or difference and vice versa - Simple trigonometric equations - Properties of triangles - Inverse Trigonometric functions.
Complex Numbers: Modulus and conjugate, arithmetic operations on complex number-Modulus-Amplitude form (Polar form)-Euler form (exponential form)-Properties- De Movire's Theorem and its applications.

Unit - III : Analytical Geometry

Circles-Equation given center and radius-given ends of diameter-General equation-finding center and radius. Standard forms of equations of Parabola, Ellipse and Hyperbola - simple properties.

Unit - IV: Differentiation and its Applications

Functions and limits - Standard limits - Differentiation from the First Principles Differentiation of sum, product, quotient of functions, function of function, trigonometric, inverse trigonometric, exponential, logarithmic, Hyperbolic functions, implicit, explicit and parametric functions - Derivative of a function with respect to another function-Second order derivatives -Geometrical applications of the derivative (angle between curves, tangent and normal) - Increasing and decreasing functions - Maxima and Minima (single variable functions) using second order derivative only - Derivative as rate measure -Errors and approximations - Partial Differentiation - Partial derivatives up to second order - Euler's theorem.

Unit - V: Integration and Its Applications

Indefinite Integral - Standard forms - Integration by decomposition of the integrand of trigonometric, algebraic, exponential, logarithmic and Hyperbolic functions - Integration by substitution - Integration of reducible and irreducible quadratic factors - Integration by parts - Definite Integrals and properties, Definite Integral as the limit of a sum - Application of Integration to find areas under plane curves and volumes of Solids of revolution - Mean and RMS value.

Unit-VI: Differential Equations

Definition of a differential equation-order and degree of a differential equation- formation of differential equations-solution of differential equation of the type first order, first degree, variable-separable, homogeneous equations, exact, linear differential equation of the form $d y / d x+\mathrm{Py}=\mathrm{Q}$, Bernoulli's equation, nth order linear differential equation with constant
coefficients both homogeneous and non homogeneous and finding the Particular Integrals for the functions $e^{a x}, x^{m}$, Sin $a x, \operatorname{Cos} a x$.

ANNEXURE II

FOR DIPLOMA HOLDERS
 MATHEMATICS (Common Syllabus)

Number of Questions to be Set Unit Wise (TOTAL 50)

UNIT NO	TOPICS	MARKS
I	Matrices	$\mathbf{0 5}$
	Partial Fractions	$\mathbf{0 2}$
II	Trigonometry	$\mathbf{1 0}$
	Complex numbers	$\mathbf{0 2}$
III	Analytical geometry	$\mathbf{0 6}$
IV	Differentiation and its applications	$\mathbf{1 0}$
V	Integration and its applications	$\mathbf{0 8}$
VI	Differential equations	$\mathbf{0 7}$
TOTAL		$\mathbf{5 0}$

ANNEXURE III
FOR DIPLOMA HOLDERS
MODEL QUESTIONS FOR MATHEMATICS

1. The maximum value of
$5+8 \operatorname{Cos} \theta+6 \operatorname{Sin} \theta$ is
1) 25
2) 19
3) 15
4) 5
2. The value of $\operatorname{Cos} 10^{0} \operatorname{Cos} 50^{\circ} \operatorname{Cos} 70^{0}$ is
1) $\frac{\sqrt{3}}{4}$
2) $\frac{\sqrt{3}}{2}$
3) $\frac{\sqrt{3}}{6}$
4) $\frac{\sqrt{3}}{8}$
3. If $\operatorname{Sec} 2 \theta=\frac{-2}{\sqrt{3}}$ then the general solution θ is
1) $2 \mathrm{n} \pi \pm \frac{5 \pi}{6}$
2) $\mathrm{n} \pi \pm \frac{5 \pi}{6}$
3) $\mathrm{n} \pi \pm \frac{5 \pi}{12}$
4) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
4. The eccentricity of the ellipse $3 x^{2}+2 y^{2}=6$ is
1) $\frac{1}{3}$
2) $\frac{1}{\sqrt{3}}$
3) $\frac{1}{4}$
4) $\frac{1}{2}$
5. $\int_{0}^{1} \frac{x e^{x}}{(1+x)^{2}} d x=$
1) $\frac{e-2}{2}$
2) $e-2$
3) $\frac{e-1}{2}$
4) $\mathrm{e}-1$
