## PHYSICS (Common Syllabus for all Diploma Holders in Engineering))

Unit-1: Units and dimensions: Physical quantity-fundamental and derived physical quantities-units-fundamental and derived units-SI units-multiples and sub-multiples in SI units-advantages of SI units-dimensions and dimensional formulae-dimensionless quantitiesapplications and limitations of dimensional analysis-problems.

## Unit-2: Elements of vectors:

Scalar and vector quantities-examples-graphical representation of a vector-types of vectorsaddition and subtraction of vectors-triangle law-parallelogram law and its cases-polygon lawresolution of a vector-unit vectors ( $\mathrm{i}, \mathrm{j}, \mathrm{k}$ )-dot product and cross product of two vectorscharacteristics of dot and cross products-examples-problems.

## Unit-3: Kinematics and Friction

Equations of motion-acceleration due to gravity-equations of motion under gravityexpressions for maximum height, time of ascent, time of descent, time of flight, velocity on reaching the point of projection-motion of a body projected from the top of a tower-projectile motion-examples-horizontal and oblique projections-expressions for maximum height, time of ascent, time of flight, horizontal range, magnitude and direction of resultant velocityproblems.
Friction-normal reaction-laws of friction-coefficients of friction-angle of friction-methods of reducing friction-advantages and disadvantages of friction-motion of a body over a smooth inclined plane and a rough inclined plane-problems.

## Unit-4: Work, Power and Energy

Work, power and energy-definitions and units-potential and kinetic energies-examples and expressions-law of conservation of energy-problems-renewable and non-renewable sources of energy (solar, wind, biogas, tidal, nuclear energies etc)

## Unit-5: Simple harmonic motion and acoustics

Definition-conditions of SHM-examples of SHM-expressions for displacement, velocity, acceleration, time period, frequency and phase of SHM-time period of a simple pendulumseconds pendulum-problems. Sound-musical sound and noise-noise pollution-Effects and methods of control of Noise Pollution-Beats and echoe-problems-Doppler effect Explanation, cases and Applications Acoustics of buildings-Reverberation-Sabines' formulacharacteristics of a good building-problems.

## Unit:6: Heat and Thermodynamics

Expansion of gases-Boyle's law-Absolute scale of temperature-charle's laws-Ideal gas equation-Universal gas constant and its value-SI Units-problems-external work done by a gas-isothermal process-adiabatic process-first law of thermodynamics and its applications to isothermal process and adiabatic process-two specific heats of a gas-relation between Cp and Cv -problems-second law of thermodynamics and its applications.

## Unit:7 Modern Physics

Photoelectric effect - explanation and its laws-applications of photoelectric effect (photocell) - critical angle and total internal reflection - optical fibers - principle, working, types and applications-concept of super conductivity - its properties and applications.

| UNIT NO | TOPICS | MARKS |
| :--- | :--- | :--- |
| I | Units and Dimensions | $\mathbf{0 2}$ |
| II | Elements of Vectors | $\mathbf{0 2}$ |
| III | Kinematics and Friction | $\mathbf{0 6}$ |
| IV | Work, Power and Energy | $\mathbf{0 3}$ |
| V | Simple Harmonic Motion and Acoustics | $\mathbf{0 5}$ |
| VI | Heat and Thermodynamics | $\mathbf{0 5}$ |
| VII | Modern Physics | $\mathbf{0 2}$ |
| Total |  |  |

## ANNEXURE III

## MODEL QUESTIONS FOR PHYSICS

1. If young's modulus ' Y ', surface tension ' S ' and velocity ' V ' are chosen as fundamental quantities, the dimensional formula for force is
2. Y-5V-4S6
3. $\mathrm{Y}^{-3} \mathrm{~V}^{5} \mathrm{~S}^{5}$
4. $\mathrm{Y}^{-5} \mathrm{~V}^{-4} \mathrm{~S}^{5}$
5. $\mathrm{Y}^{-3} \mathrm{~V}^{-4} \mathrm{~S}^{6}$
6. A ballon moves up with constant velocity $10 \mathrm{~m} / \mathrm{s}$. An object is dropped from it when it is at a height of 100 m above the ground. The distance between the object and the ballon after 5 sec is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
7. 120 m
8. 125 m
9. 100 m
10. 150 m
11. The time period of an oscillating simple pendulum is ' T '. If its length is increased by 5 cm then the time period is ' $\mathrm{T}_{1}$ ' and the time period is ' $\mathrm{T}_{2}$ ' if the length is reduced by 5 cm . The relationship among $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$
12. $\mathrm{T}^{2}=\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}^{2}$
13. $\mathrm{T}^{2} / 2=\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}{ }^{2}$
14. $2 \mathrm{~T}^{2}=\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}{ }^{2}$
15. $3 \mathrm{~T}^{2}=\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}{ }^{2}$
16. A gas is heated through 4 K in a closed vessel. If its pressure is increased by $0.8 \%$, the initial temperature of the gas is
17. 227 K
18. 454 K
19. $454^{\circ} \mathrm{C}$
20. $227^{\circ} \mathrm{C}$
21. If light travels through two media with velocities $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ respectively, the critical angle for the combination of the two media is
22. $\operatorname{Sin}^{-1}(4 / 5)$
23. $\operatorname{Sin}^{-1}(3 / 5)$
24. $\operatorname{Sin}^{-1}(2 / 5)$
25. $\operatorname{Sin}^{-1}(1 / 5)$
