Booklet No. :

NT - 15 Nano Technology

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

NANO TECHNOLOGY (NT)

1. Select the equation that represents the equation of force equilibrium in the x direction.

- (A) $P\cos 45 F\cos 45 + 100\cos 30 = 0$
- (B) $100\cos 30 + F\cos 75 P\cos 15 = 0$
- (C) $F \cos 75 + 100 \cos 30 P \cos 45 = 0$
- (D) $-P\cos 45 + F\cos 75 + 100 = 0$
- 2. A coplanar parallel system of forces will be in equilibrium, if.....
 - I. the resultant of the coplanar parallel force system is equal to zero.
 - **II.** the system reduces to a couple equal to zero.
 - (A) I alone is correct (B) II alone is correct
 - (C) both I and II are correct (D) Neither I nor II is correct.
- **3.** Determine the x-coordinate of the location of the center of mass for the masses shown in Figure.

- (A) 0.45m (B) 0.73m (C) 0.96m (D) 0.54m
- **4.** Find the polar moment of inertia of a square of length 'a' with respect to its centroid.
 - (A) $a^{4}/6$ (B) $a^{4}/12$ (C) $a^{4}/3$ (D) $a^{4}/9$
- 5. If a force \overline{E} acts in space at a point A whose position vector is \overline{a} , the moment of the force \overline{E} about the origin is given by

$(A) \bar{E} x \bar{a} \qquad (B) \bar{E}.\bar{a} \qquad (B) $	(C) $\bar{a} \times \bar{E}$	(D) ā.Ē
---	------------------------------	---------

Set - A

- 6. A particle moving along a circle with variable angular speed will have
 - (A) tangential component of acceleration only
 - (B) normal component of acceleration only
 - $(C) \quad \text{no acceleration} \quad$
 - (D) both tangential and normal components of acceleration
- 7. Centrifugal force is
 - (A) real force (B) fictitious force
 - (C) not an inertial force (D) an inertial force
- 8. A thin ring of mass M and radius R rolls down an incline from a height H without slipping, the maximum attainable velocity V of its center will be_____

(A)
$$V = (gH)^{1/2}$$
 (B) $V = (2gH)^{1/2}$ (C) $V = \left(\frac{2}{3}gH\right)^{1/2}$ (D) $\left(\frac{3}{2}gH\right)^{1/2}$

- 9. The conservation of momentum of a two body system is possible if
 - (A) external force acts on any one of the bodies
 - (B) external forces act on both the bodies
 - (C) no external force acts on either body
 - (D) each body exerts no force on the other body
- 10. A disc is fixed at its center to the one end of a shaft of torsional stiffness K_t , the other end of the shaft is fixed. If the mass moment of inertia of the disc about the axis of the shaft is I, what is the natural frequency of the torsional system ? (A) $(K_t/I)^{1/2}$ (B) $(K_tI)^{1/2}$ (C) $(I/K_t)^{1/2}$ (D) $(2K_t/I)^{1/2}$
- 11. The area under the stress strain curve (up to elastic limit) gives _____
 - (A) strain energy (B) strain energy per unit volume
 - (C) modulus of elasticity (D) bulk modulus
- **12.** In which cross section of a cantilever beam with an end point load, the maximum bending stress occurs ?
 - (A) Cross section at free end (B) Cross section at mid length
 - (C) Cross section at the fixed end (D) Depends on the magnitude of the load
- 14. According to the theory of simple bending, the variation of bending stress across a beam cross section is _____
 - (A) Linear (B) Zero (C) Parabolic (D) Hyperbolic
- Set A

3

15.	The rate of change of shear force along the length of a beam is equal to
16.	 In case of biaxial stresses, the maximum shear stress is (A) difference of normal stresses (B) half the difference of normal stresses (C) sum of the normal stresses (D) half the sum of normal stresses
17.	For two shafts joined in series, which of the following is the same ?(A) Shear stress(B) Torque(C) Angle of twist (D) Stiffness
18.	The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M is (A) M/T (B) M/2T (C) 4M/T (D) 2M/T
19.	The planes of maximum shear stress lie at to the planes of principal stresses. (A) 45° (B) 90° (C) 270° (D) 120°

- **20.** For the case of two perpendicular direct stresses with simple shear, the extremities of its Mohr's stress circle diameter indicate _____
 - (A) maximum and minimum principal stresses
 - (B) maximum and minimum shear stresses
 - (C) maximum principal stress and maximum shear stresses
 - (D) minimum principal stress and maximum shear stresses
- 21. A composite slab has two layers of different materials with thermal conductivity K_1 and K_2 . If each layer had the same thickness, the equivalent thermal conductivity of the slab would be

(A)
$$K_1 + K_2$$
 (B) $\frac{K_1 + K_2}{K_1 K_2}$ (C) $\frac{2K_1 K_2}{K_1 + K_2}$ (D) $K_1 K_2$

- **22.** It is desired to increase the heat dissipation rate over the surface of an electronic device of spherical shape of 5 mm radius exposed to convection with h=10W/m²K by encasing it in a spherical sheath of conductivity 0.04 W/m K. For maximum heat flow, the diameter of the sheath should be
 - (A) 18 mm (B) 16 mm (C) 12 mm (D) 8 mm
- 23. Up to the critical radius of insulation
 - (A) added insulation will increase heat loss
 - (B) added insulation will decrease heat loss
 - (C) convection heat loss will be less than conduction heat loss
 - (D) heat flux will decrease.

Set - A

- 24. The average heat transfer coefficient of an electric heater which has heat flux 6000 W/m^2 , the surface temperature of 120 °C is cooled by air at 70 °C is (A) 60 (B) 120 (C) 180 (D) 240
- **25.** A flat composite wall with three different materials whose thermal conductivity and thicknesses are k₁, k₂, & k₃ and x₁, x₂, & x₃ respectively. The surface temperatures are t₁, t₂, t₃ & t₄. The conduction through wall is

(A)
$$Q = \frac{\frac{k_{1}A}{x_{1}} + \frac{k_{2}A}{x_{2}} + \frac{k_{3}A}{x_{3}}}{(t_{1} - t_{4})}$$
(B)
$$Q = \frac{(t_{1} - t_{4})A}{\frac{k_{1}}{x_{1}} + \frac{k_{2}A}{x_{2}} + \frac{k_{3}A}{x_{3}}}$$
(C)
$$Q = \frac{t_{1} - t_{4}}{\frac{k_{1}A}{x_{1}} + \frac{k_{2}A}{x_{2}} + \frac{k_{3}A}{x_{3}}}$$
(D)
$$Q = \frac{t_{1} - t_{4}}{\frac{k_{1}A}{x_{1}} + \frac{k_{2}A}{x_{2}} + \frac{k_{3}A}{x_{3}}}$$

- 26. The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius
 - (A) constant (B) increases
 - (C) decreases (D) decreases first and then increases
- 27. A hollow cylinder of internal radius r_1 , external radius r_2 , and length L, the heat transfer in radial direction is

(A)
$$Q = \frac{2\pi L(t_1 - t_2)k}{\log_{10} r_2 / r_1}$$
 (B) $Q = \frac{2\pi L \log_e(t_1 / t_2)}{(r_2 - r_1)k}$
(C) $Q = \frac{2\pi L(t_1 - t_2)}{k(r_2 - r_1)}$ (D) $Q = \frac{2\pi L(t_1 - t_2)k}{\log_e r_2 / r_1}$

- 28. The ratio of inertia force to viscous force is
 (A) Biot number
 (B) Euler number
 (C) Reynolds number
 (D) Reyleigh number
- 29. Mean radius of a hollow sphere of outer and inner radii of 16mm and 9mm is equal to (A) 12.5mm (B) 14.4 mm (C) 17 mm (D) 12mm

30. If k is thermal conductivity and h is film coefficient of heat transfer at outer radius of a sphere, then the critical radius of insulation is

(A)
$$\frac{k}{h}$$
 (B) $\frac{2k}{h}$ (C) $\sqrt{\frac{k}{h}}$ (D) $\sqrt{\frac{2k}{h}}$

31. Wavelength for maximum emissive power is given by

- (A) Stefan's law (B) Kirchoff's law
- (C) Wein's law (D) Plank's law

Set - A

5

32. Air at 50 °C blows over a plate of 50 cm × 20 cm maintained at 250 °C. If the convection heat transfer coefficient is 25 W/m² °C, the heat transfer rate is
(A) 125W
(B) 500W
(C) 750W
(D) 1000W

33. A furnace wall of thickness 1 m and of surface area 3 m², is made of a material whose thermal conductivity is 1 kJ/hr m°C. The temperature of inner surface of the wall is 950 °C and of outer surface is 150 °C. Heat flow through the wall in kJ/hr (A) 450 (B) 2400 (C) 2650 (D) 2850

- **34.** Three metal walls of the same cross-sectional area having thermal conductivities in the ratio 1 : 3 : 5 transfer heat at the rate of 6000 kJ/hr. For the same wall thickness, the temperature drops will be in the ratio.
 - (A) 1:1:1 (B) 1:3:5 (C) $1:\frac{1}{3}:\frac{1}{5}$ (D) $\frac{1}{5}:\frac{1}{3}:1$
- **35.** A wall of (surface area A, thickness Δx and conductivity k) contains hot fluid at temperature T_1 on one side and cold fluid at temperature T_2 on the other side. The rate of heat transfer from hot fluid to cold fluid is equal to

(A)
$$\frac{\left(\frac{1}{h_{1}A} + \frac{\Delta x}{kA} + \frac{1}{h_{2}A}\right)}{(T_{1} - T_{2})}$$
(B)
$$\frac{(T_{1} - T_{2}\left(\frac{1}{h_{1}} + \frac{1}{h_{2}}\right)A}{\Delta x}$$
(C)
$$\frac{(T_{1} - T_{2})(h_{1} - h_{2})}{A(\Delta x)}$$
(D)
$$\frac{(T_{1} - T_{2})(h_{1} - h_{2})}{\left(\frac{1}{h_{1}A} + \frac{\Delta x}{kA} + \frac{1}{h_{2}A}\right)}$$

36. A drum of radius R full of a fluid of density d is rotated at ω rad/sec. The increase in pressure at the outer edge of the drum will be

(A)
$$\frac{\omega^2 R^2 d}{2}$$
 (B) $\frac{\omega^2 R d}{2}$ (C) $\frac{\omega R d}{2}$ (D) $\frac{\omega R d^2}{2}$

37. The critical velocity is

- (A) maximum attainable velocity
- (B) terminal velocity
- (C) velocity above which the flow ceases to be streamlined
- (D) velocity at which flow is maximum
- **38.** Reynolds number for non-circular cross section in terms of V-mean velocity, *v*-kinematic viscosity and P- ratio of cross sectional area to the wetted perimeter is

(A)
$$\frac{V.4P}{v}$$
 (B) $\frac{V.P}{v}$ (C) $\frac{V.P}{4v}$ (D) $\frac{VP}{2v}$
Set - A 6 NT

- **39.** The flow of any fluid, real or ideal, must fulfill the following :
 - (A) Newton's law of viscosity
 - (B) Newton's second law of viscosity
 - (C) Velocity at boundary must be zero
 - (D) The continuity equation

40. For a two- dimensional fluid element in x-y plane, the rotational component is given as

(A)
$$\omega_{z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

(B) $\omega_{z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)$
(C) $\omega_{z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)$
(D) $\omega_{z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$
Density of water is maximum at

- (A) $0 \,^{\circ}\text{C}$ (B) $4 \,^{\circ}\text{C}$ (C) $32 \,^{\circ}\text{C}$ (D) $100 \,^{\circ}\text{C}$
- **42.** If the velocity in a fluid flow does not change with respect to length of direction of flow, it is called
 - (A) rotational flow

41.

- (B) incompressible flow
- (C) uniform flow (D) steady flow
- **43.** The cross sectional areas of a Venturimeter at inlet and outlet are A_1 and A_2 respectively. If the pressure head h, and coefficient of discharge is C_d then the discharge is

(A)
$$Q = C_{d} \frac{A_{1}^{2}A_{2}^{2}}{\sqrt{A_{1}^{2} - A_{2}^{2}}} \times \sqrt{2gh}$$
 (B) $Q = C_{d} \frac{A_{1}A_{2}}{\sqrt{2A_{1}^{2} - A_{2}^{2}}} \times \sqrt{2gh}$
(C) $Q = C_{d} \frac{A_{1}^{2}A_{2}^{2}}{\sqrt{2A_{1}^{2} - A_{2}^{2}}} \times \sqrt{2gh}$ (D) $Q = C_{d} \frac{A_{1}A_{2}}{\sqrt{A_{1}^{2} - A_{2}^{2}}} \times \sqrt{2gh}$

- 44. The square root of the ratio of inertia force to gravity force is
 - (A) Reynolds number (B) Euler number
 - (C) Mach number (D) Froude number

45. Model analysis of aeroplanes and projectile moving at super- sonic speed are based on

- (A) Euler number (B) Mach number
- (C) Froude number (D) Reynolds number
- **46.** Drag force is expressed mathematically as
- (A) $F_D = \frac{1}{2}\rho U^2 \times C_D \times A$ (B) $F_D = \frac{1}{4}\rho U^2 \times C_D \times A$ (C) $F_D = 2\rho U^2 \times C_D \times A$ (D) $F_D = \rho U^2 \times C_D \times A$ Set - A NT

47. The thickness of turbulent boundary layer at a distance x from the leading edge over a flat plate varies as

(C) $x^{4/5}$ (A) $x^{3/5}$ (D) $x^{1/2}$ (B) $x^{1/5}$

48. The relation between co-efficient of friction (f) and Reynolds number (Re) for laminar flow through a pipe is given by

(A)
$$f = \frac{4}{R_e}$$
 (B) $f = \frac{8}{R_e}$ (C) $f = \frac{12}{R_e}$ (D) $f = \frac{16}{R_e}$

- **49**. Which furnace employs preheating, heating and soaking zones?
 - (A) Soaking pit **(B)** Cupola
 - Reheating furnace Open hearth furnace (D) (C)
- 50. The time period of oscillation of a floating body, whose radius of gyration is k and metacentre height GM, is

(A)
$$T = 2\pi \sqrt{\frac{GM}{gk^2}}$$

(B) $T = 2\pi \sqrt{\frac{gk^2}{GM}}$
(C) $T = 2\pi \sqrt{\frac{k^2}{GM \times g}}$
(D) $T = 2\pi \sqrt{\frac{GM \times g}{k^2}}$

- 51. The first law of thermodynamics states
 - (A) About chemical equilibrium of system
 - (B) Law of conservation of energy of system
 - (C) Properties of atoms involved in the system
 - (D) Phase equilibrium
- 52. The heat transfer takes place according to
 - (A) first law of thermodynamics
 - (B) zeroth law of thermodynamics
 - (C) second law of thermodynamics
 - (D) fourier's law

53. At equilibrium of any system

(A) $\Delta G = RT \ln K$ (B) $\Delta G = -RT \ln K$

- (C) $\Delta G^{\circ} = RT \ln K$ (D) $\Delta G^{\circ} = -RT \ln K$
- 54. An ideal solution is one, which obeys
 - (A) Raoult's law

- **(B)** Henry's law
- (C) Sievert's law (D)
- Set A

- 8
- Gibb's Duhem law

- (A) Oxidation of metals
- (B) Reduction of metal oxides
- (C) Kinetics of the oxide reaction
- (D) Value of partial pressure of oxygen for the reactions shown in a diagram

56.	A body which absorbs all the radiations falling on it, is called								
	(A)	Opaque body	r		(B)	White body			
	(C)	Black body			(D)	Transparent	body		
57.	Acc	ording to phase	e rule						
		P - F = C + 2			(B)	F + C = P +	2		
	. ,	P + F = C + 2				P + C = F +			
58.	The	enthalpy of a c	hemic	val element in t	he sta	ndard state at	0°C is	,	
50.					(C)			, 10	
	(A)	0	(B)	1	(C)	5	(D)	10	
59.	The	change in enth	alpy is	s given as					
	(A)	dH = V.dP/S	.dT		(B)	dH = P.dv/T	.dS		
	(C)	dH = S.dT+P	.dv		(D)	dH = T.dS + T	V.dP		
60.	An i	solated system	is tha	t					
000	(A)	whose interna							
	(B)			lue is negative					
	(C)			ductivity is inf	inite				
	(C) (D)			ed by its surrou		ç			
	(D)	which is not a	ancen	cu by its suitor	manng	5			
61.	The	well known ga	s equa	ation $(P+a/V^2)$	(V-b)	= RT is called	l		
	(A)	Charle's			(B)	Ostwald's			
	(C)	Dulong and F	Petit		(D)	Vanderwaal	's		
62.	The	measure of the	tende	ency of a given	eleme	ent to leave a g	given p	hase is	
	(A)	Its chemical j	potent	ial	(B)	Its enthalpy			
	(C)	Its C _p			(D)	Its C _v			
63.	The	second law of	thorm	odvnamica ia r	rimori	ly concorrect	with		
03.				•		•		Enthology	
	(A)	Entropy	(D)	Free energy	(C)	Activity	(D)	Enthalpy	
Set -	A				9				

- 64. In a heat engine following the carnot cycle and operating between a heat source at T_1 and Heat sink at T_2 , which of the following will lead to a maximum increase in efficiency (assume that the extent of the change, ΔT , is the same in all cases) ?
 - (A) Lowering T_2 by ΔT , keeping T_1 constant
 - (B) Lowering T_1 by ΔT , keeping T_2 constant
 - (C) Increasing T_2 by ΔT , keeping T_1 constant
 - (D) Increasing T_1 by ΔT , keeping T_2 constant
- **65.** The enthalpy change for a reaction is the same whether it takes place in one or several stages. This statement refers to
 - (A) Kirchoff's law (B) First law of thermodynamics
 - (C) Hess's law (D) Second law of thermodynamics

66. For the reaction, ZnO (s) + $H_2(g) \longrightarrow Zn(s) + H_2O(g)$

$$\Delta H^{0}_{500}$$
 = + 140 kJ mol⁻¹; ΔS^{0}_{500} = + 60 kJ K⁻¹ mol⁻¹

The above reaction at 500K is _____

- (A) feasible
- (B) not feasible
- (C) forward and backward reaction are equally feasible
- (D) feasibility can't be determined

67. In the reaction $N_2 + 3H_2 \rightarrow 2NH_3 + 92.37$ kJ, the formation of NH_3 will be favoured by

- (A) low temperature
- (B) high temperature
- (C) low pressure and high temperature
- (D) low temperature and high pressure
- 68. If the concentration of reactant is increased in a system at equilibrium, the
 - (A) equilibrium constant increases (B) reaction will shift to left
 - (C) reaction will shift to right (D) equilibrium constant decreases
- 69. In the reaction Fe + $CO_2 \leftrightarrow FeO + CO$, increasing the pressure will
 - (A) shift the equilibrium towards right
 - (B) shift the equilibrium towards left
 - (C) no change in equilibrium condition
 - (D) equilibrium constant increases

Set - A

70.	In the reaction, $ZnO + C \rightarrow Zn + CO$, $\Delta H^0 = + 349 \text{ kJ} / \text{mol}^{-1}$ increase in
	temperature will

- (A) shift the equilibrium towards left
- (B) shift the equilibrium towards right
- (C) no change in the position of equilibrium
- (D) equilibrium constant remains unaltered
- 71. Gibbs Helmholtz equation is
 - (A) $\Delta G = \Delta H T\Delta S$ (B) $\Delta G = \Delta H + T [\Delta (\Delta G) / dT]_P$
 - (C) $dP/dT = \Delta H_{vap}/T\Delta V_{vap}$ (D) $\Delta A = \Delta U T\Delta S$
- 72. Ellingham diagrams for $M MO_x$ reactions is a plot of

(A)	ΔG vs T	(B)	ΔG vs 1/T
(C)	ΔG^0 vs T	(D)	ΔG^0 vs 1/T

73. In the Ellingham diagram of oxides, the reaction that is parallel to the temperature axis is (A) $2C + O_2 = 2CO$ (B) $2Zn + O_2 = 2ZnO$

- (C) $C + O_2 = CO_2$ (D) $2CO + O_2 = 2CO_2$
- 74. In the Ellingham diagram of oxides, the position of formation ______ oxide is very low
 - (A) Fe(B) Ca(C) Mg(D) Al

75. Ellingham diagram does not give any idea about

- (A) reduction of metal sulphides (B) oxidation of metals
- (C) kinetics of reaction (D) reduction of metal oxides
- 76. Metal chlorides cannot be reduced by carbon because of the fact that
 - (A) unstable metal carbide is formed
 - (B) unstable carbon tetrachloride is formed
 - (C) reactions require very high temperature
 - (D) reactions require sub-zero temperature
- 77. The units of rate constant for a second-order reaction is
 - (A) $mol^2 m^3 s^{-2}$ (B) $mol^{-1} m^3 s^2$
 - (C) $mol^{-1} m^3 s^{-1}$ (D) $mol^{-2} m^3 s^{-3}$

 Set - A
 11
 NT

78.	The recrystallised	grain size	will be smaller
-----	--------------------	------------	-----------------

- (A) lower the annealing temperature and lower the amount of prior cold work
- (B) higher the annealing temperature and lower the amount of prior cold work
- (C) lower the annealing temperature and higher the amount of prior cold work
- (D) higher the annealing temperature and higher the amount of prior cold work
- **79.** The driving force for grain growth is
 - (A) decrease in dislocation strain energy
 - (B) increase in grain boundary energy
 - (C) decrease in grain boundary energy
 - (D) decrease in vacancy concentration
- 80. Hot working of metals is carried out
 - (A) Below recrystallization temperature
 - (B) Above recrystallization temperature
 - (C) Not related to temperature
 - (D) Above melting point

81. Coordination number in simple cubic crystal structure

	(A) 1	(B) 6	(C) 3	(D) 4	
82.	The angle betwe	en the line vector and	burgers vector of	of an edge dislocation is	
	(A) 180°	(B) 120°	(C) 90°	(D) 0°	
83.	The close-packe	d direction in F.C.C. is	5		
	(A) [100]	(B) [111]	(C) [210]	(D) [110]	
0.4	a . 				

84. Stage III in single crystal deformation is due to
(A) easy glide
(B) cross-slip
(C) work hardening
(D) dynamic recovery

85. Dislocation density depends on

(A) Temperature(B) Strain-rate(C) Degree of cold work(D) Time

86. Screw dislocation can move into a different slip plane by(A) glide(B) cross-slip

(C) cross-slip and climb (D) climb

87. Yield strength of the material is related to grain size 'd'

(A) Proportional to d(B) Inversely proportional to d(C) Proportional to \sqrt{d} (D) Inversely Proportional to \sqrt{d}

Set - A

12

88.	True	e stress-strain c	urve n	eed to be corre	ected a	lfter		
	(A)	Elastic limit			(B)	Yield limit		
	(C)	Tensile stren	gth		(D)	No need to c	orrect	
89.	The	The coordination number for a H.C.P.				is		
	(A)	4	(B)	6	(C)	12	(D)	8
90.	Stac	king faults are			_ impe	erfections		
	(A)	linear	(B)	point	(C)	surface	(D)	volume
91.	Cho	ose the correct	staten	nent				
	(A)	-	-	arallel to an ed	-			
	(B)	-	-	erpendicular to				
	(C)			an undergo cro		р		
	(D)	Screw disloc	ation c	an undergo cli	mb			
92.	The	dislocation rea	action a	a/2 [1 1 1] + a/				
	(A)	6 1				energetically		
	(C)	vectorially u	nbalan	ced	(D)	likely to occ	ur in T	in.
93.	Mat	erial showing v	well de	fined yield po	int in t	he stress-strai	n diagr	am
	(A)	Aluminium a	alloy		(B)	Cast Iron		
	(C)	Mild Steel			(D)	Cement		
94.	The	stacking fault			•		metal E	3, then
	(A)		-	ault will be gro				
	(B)		-	ault will be gro				
	(C)	_		dislocation with			В	
	(D)	Metal A will	work	harden more th	nan me	etal B		
95.	Whi	ch of the follo	wing n	naterial has over	er lapp	oing energy ba	nds?	
	(A)	Diamond	(B)	Al	(C)	Ge	(D)	Si
96.			-	urity for a p-ty	-			C1
	(A)	Р	(B)	As	(C)	In	(D)	Sb
97.		material used						
	(A)	Fe - 5% W	(B)	Fe - 4% Cr	(C)	Fe - 4% Si	(D)	Barium ferrite
98.	Exa	mple for a ther	mosett	ing polymer is	6			
	(A)	Polyethylene	;		(B)	Polyester		
	(C)	Cellulose nit	rate		(D)	PVC		
Set -	A				13			

99.	Electrical conductivity of a metal (A) decreases (C) remains constant				wit (B) (D)	B) increases			
100.	For	soft magnetic 1	nateri	als magnetic co	oerciv	ity and saturat	ion m	agnetization should	l be
	(A)	low & low	(B)	high & low	(C)	low & high	(D)	high & high	
101.	In th	e PTFE (Teflor	n) moi	nomer, the four	· side	groups are			
	(A)	FFFF	(B)	НННН	(C)	НННСІ	(D)	H H H CH ₃	
102.		first three refle		planes of silico					
	(A)	111, 200, 220			(B)	110, 200, 211			
	(C)	111, 220, 311			(D)	100,110,111			
103.	The	word 'ceramic'	mear	nt for					
		soft material					l (D)	dry material	
104.	Not	a characteristic	nrone	erty of ceramic	mater	ial			
1040	(A)			•		high mechani	cal str	ength	
	(C)	low elongatio		5	(D)	•		6	
105.	Maio	or ingredients o	f tradi	tional ceramic	s				
100.	(A)	•	(B)		(C)	feldspar	(D)	all the above	
106.	Not	a major contrib	utoro	fonginooring	oromi	00			
100.	(A)	a major contrib SiC	(B)	SiO ₂	(C)		(D)	Al_2O_3	
	(11)	510	(2)	SICZ	(0)	0131.14	(2)	1 1 2 0 3	
107.	The	following cerai	nic pr	oduct is mostly	used	as pigment in	paints		
	(A)	TiO ₂	(B)	SiO ₂	(C)	UO_2	(D)	ZrO_2	
100	М	4	1						
108.		t commercial g lime	(B)	soda	(C)	silica	(D)	all the above	
	(11)	mine	(D)	30 u a	(C)	Silled	(D)	an the above	
109.	The	atomic diamete	er of a	n BCC crystal ((if a is	lattice parame	ter) is		
	(A)	а	(B)	a/2	(C)	$a/(4/\sqrt{3})$	(D)	$a/(4/\sqrt{2})$	
110.	If 'c	' is the velocity	y of li	ght in vacuum.	and '	v' is the veloc	ity of	light in a material,	the
		x of refraction		-			. j 01		
	(A)	n = c/v	(B)	n = v/c	(C)	$n = (v/c)^2$	(D)	$n = (c/v)^2$	
Set -	Α				14				NT
	I								. –

111.	A very weak form of magnetism that is nonpermanent and persists only when an external field is applied and manifests itself in a direction opposite to that of the applied field is							
	called							
	(A) Diamagnetism	(B)	Paramagnetism					
	(C) Ferromagnetism	(D)	Ferrimagnetism					
112.	The energy of a dislocation is							
	(A) Proportional to b	(B)	Proportional to b^2					
	(C) Proportional to 1/b	(D)	Independent of b					
113.	The property of a material varies with material	the o	orientation or the direction in case of a/an					
	(A) Isotropic (B) Anisotropic	(C)	Plastic (D) Elastic					
114.	Schottky Defect is							
	(A) anion and cation vacancy	(B)						
	(C) inclusion	(D)	substitutional defect					
115.	N-type semiconductor is a silicon doped							
	(A) monovalent	(B)	divalent					
	(C) trivalent	(D)	pentavalent					
116.	Insulators have							
	(A) high dielectric constants	(B)						
	(C) high electrical conductivity	(D)	none of the above					
117.	Mechanical properties of fiber reinforce	ed con	posites depend on					
	(A) Properties of constituents							
	(B) Interface strength(C) Fiber length, orientation, and volu	ıma fr	action					
	(C) Fiber length, orientation, and volu(D) All the above		action					
118.	Nanostructure can be studied using							
	(A) Optical microscope	(B)	AFM					
	(C) Rockwell tester	(D)	UTM					
119.	Example of Top-down approach							
	(A) PVD	(B)	CVD					
	(C) High Energy ball mill	(D)	Electrodeposition					
120.	Example of one-dimensional nano-struc							
	(A) Nano-particle	(B)	Nano-tube					
	(C) Nano-film	(D)	Nano-crystal					

SPACE FOR ROUGH WORK