

Booklet No. :

FT - 16

Food Technology

	Durat	ion	of	Test	:	2	Hours
--	-------	-----	----	------	---	---	-------

Max. Marks : 120

Hall Ticket No.

Name of the Candidate :____

Date of Examination :_

OMR Answer Sheet No. : _

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

FT-16-A

FOOD TECHNOLOGY (FT)

1.	The p	pigment type in	brinja	d is				
	(A)	Carotenoid	(B)	Anthocyanin	(C)	Caramel	(D)	Chlorophyll
2.	Phyto	ol chain is prese	ent in					
	(A)	Carotenoids	(B)	Chlorophyll	(C)	Hemoglobin	(D)	Phycocyanin
3.	Whic	h amino acid h	as an a	aromatic pheno	lic sid	le chain ?		
	(A)	Histidine	(B)	Cysteine	(C)	Tyrosine	(D)	Tryptophan
4.	Hops	are used in the	manu	facture of				
	(A)	Wine	(B)	Beer	(C)	Vinegar	(D)	All of these
5.	Prote	ins taking part	in the	perception of i	mage	are		
	(A)	Rhodopsin ar	nd pep	sin	(B)	Rhodopsin a	nd iod	dopsin
	(C)	Pepsin and io	dopsi	n	(D)	All the three	as ab	ove
6.	This	emulsifier is an	nphote	eric :				
	(A)	Glyceryl mor	nostea	rate	(B)	Sodium stea	roylla	ctylate
	(C)	Lecithin			(D)	None of the	above	
7.	Bacte	eria do not surv	ive in	highly salted p	ickles	because		
	(A)	Bacteria are l	cilled	by plasmolysis				
	(B)	Salt inhibits r	eprod	uction				
	(C)	Pickles do no	t cont	ain essential nu	trient	s		
	(D)	Bacteria do n	ot get	enough light				
8.	Aflat	oxin is a type o	f					
	(A)	Plant toxin			(B)	Fungal toxin		
	(C)	Bacterial toxi	in		(D)	None of the	above	
9.	Poly	aromatic hydro	carbo	ns are a type of				
	(A)	Plant toxin			(B)	Fungal toxin		
	(C)	Bacterial toxi	in		(D)	Environment	tal co	ntaminant
Set	A				2			

AP PGECET Food engineering 2016 question paper-2

10.	Whic	h of the follow	ing ha	s no aldehyde	or ket	onic group ?			
	(A)	Fructose	Thereau	Glucose		Sucrose	(D)	Maltose	
11.	Adeq	uacy of blanch	ing of	fruits and vege	atables	milk is gene	rally ju	udged by	
	(A)	Amylase test			(B)	Lipase test			
	(C)	Peroxidase te	st		(D)	Phosphatase	e test		
12.	This :	sweetener is a p	oroteir	1:					
	(A)	Saccharin	(B)	Monellin	(C)	Stevioside	(D)	Dulcin	
13.	The b	pioactive compo	ound i	n pepper is					
	(A)	Piperidine	(B)	Piperizine	(C)	Piperine	(D)	Piperidizine	
14.	Whic	h fatty acid is e	ssenti	al and has thre	e doul	ole bonds ?			
	(A)	Linoleic acid			(B)	Linolenic ad	cid		
	(C)	Arachidonic	acid		(D)	None of the	above		
15.	The p	rimary structu	e of a	protein is due	to				
	(A)	Hydrogen bo	nds		(B)	Peptide bon	ds		
	(C)	S-S linkage			(D)	Ionic bonds			
16.	This i	is not a metallo	protei	n :					
	(A)	Phytochrome	(B)	Cytochrome	(C)	Glycoprotei	n (D)	Ferrodoxine	
17.	This o	compound is re	spons	ible for bitter t	aste in	grapefruit :			
	(A)	Limonin	(B)	Naringenin	(C)	Naringin	(D)	Both (B) & (C)	
18.	Enzy	me A has a K _m	of 10	⁻² M, while en:	zyme l	B has a K _m of	10-4	M. Which fact is true	: ?
	(A)	Enzyme B ha	s stro	nger affinity to	the su	ibstrate than l	Enzym	e A.	
	(B)	Enzyme A ha	is a str	onger affinity	to the	substrate that	n Enzy	me B.	
	(C)	Both have sir	nilar a	ffinity for the	substra	ate.			
	(D)	K _m is not rek	ited to	the affinity of	the su	bstrate.			
19.	This	glycoside has a	steroi	idal backbone :					
	(A)	Saponins				Naringin			
	(C)	Anthocyanin			(D)	-	above	6	
Set -	A				3				FI
	10000								

AP PGECET Food engineering 2016 question paper-3

20.	Coen	zymes FMN a	and FAI	D are derived	from V	itamin			
	(A)	B ₁	(B)	B ₂	(C)	B ₆	(D)	B ₁₂	
21.	This	sugar can be t	olerated	d by diabetics	6 I				
	(A)	Lactose	(B)	Maltose	(C)	Fructose	(D)	Glucose	
22.	Whic	h of these vita	amins is	s sulphur con	taining	?			
	(A)	Folic acid			(B)	Pantothenic	acid		
	(C)	Biotin			(D)	All of the ab	ove		
23.	Defic	iency of this	vitamin	results in exe	cessive	hemorrhage :			
	(A)	A	(B)	K	(C)	В	(D)	E	
24.	Anae	robic respirat	ion of a	nimals produ	ces				
	(A)	C ₂ H ₅ OH +	CO ₂		(B)	Lactic acid -	+ wate	er	
	(C)	Glucose + (02		(D)	$CO_2 + H_2O$			
25.	A go	od quality ice	-cream	should have					
	(A)	Small numb	er of sr	nall sized ice	crystals	5			
	(B)	Small numb	per of la	rge sized ice	crystals				
	(C)	Large numb	per of sr	nall sized ice	crystals	5			
	(D)	Large numb	per of la	rge sized ice	crystals				
26.	Stalir	ng of <i>idlis</i> is d	ue to						
	(A)	Denaturatio	n of pro	otein	(B)	Gelatinizatio	on of s	starch	
	(C)	Retrogradat	tiopn of	starch	(D)	All of the ab	ove		
27.	This	polysaccharid	le is pre	sent in oats :					
	(A)	α-Glucan	(B)	β-Glucan	(C)	α, β-Glucan	(D)	All of the above	
28.	Whic	h sugar will g	give max	ximum Maill	ard brov	vning on react	tion w	ith amino acid ?	
	(A)	Glucose	(B)	Fructose	(C)	Lactose	(D)	Sucrose	
	(**)								

29.	Suga	rs mainly present in honey are		
	(A)	Glucose and galactose	(B)	Galactose and fructose
	(C)	Glucose and fructose	(D)	All the three sugars as above
30.	28°B	sugar solution can be performed	l by addin	g
	(A)	28g sugar in 72 ml water	(B)	28g sugar in 1L of water
	(C)	28g sugar in 100 ml water	(D)	None of the above
31.	Speci	ific gravity can be used to estima	ite	
	(A)	Protein in a beverage	(B)	Minerals in water
	(C)	Alcohol in beer and wine	(D)	None of the above
32.	Nutra	aceuticals associated with Age R	elated Ma	cular Degeneration are
	(A)	Lycopene and lutein	(B)	Zeaxanthin and lycopene
	(C)	Lutein and zeaxanthin	(D)	All the three as above
33.	This	product has the lowest water act	ivity :	
	(A)	Watermelon (B) Jam	(C)	Potatoes (D) Ice frozen at -50°C
34.	Conc	hing and refining are operations	involved	in
	(A)	Coffee processing	(B)	Cocoa processing
	(C)	Spice processing	(D)	None of the above
35.		ad samples A and B have a bull following is true ?	k density	of 0.430 and 0.330, respectively. Which of
	(A)	Texture of A is softer than B.	(B)	Texture of B is softer than A.
	(C)	Texture of A and B are similar	r. (D)	Bulk density is not correlated to texture.
36.	Oven	run in ice-cream is generally		
	(A)	10-40% (B) 40-70%	(C)	90-100% (D) ~200%
37.	A per	culiar amino acid present in bact	erial cell	wall is
	(A)	Glutamate	(B)	Alanine
	(C)	Diaminopimelic acid	(D)	Aspartate
Set -	A		5	FT

38.	In ase	ptic processing	, steri	lization of pac	kaging	material is a	chieve	d
	(A)	by passing th	rough	an alcohol bati	h			
	(B)	by passing un	ider U	V lamp				
	(C)	by passing th	rough	hydrogen pero	xide			
	(D)	by passing th	rough	IR lamp				
39.	Carbo	onation of beve	rages	is best done at				
	(A)	10 °C	(B)	20 °C	(C)	30 °C	(D)	40 °C
40.	Mass	spectrometry is	s base	d on				
	(A)	Charge of the	mole	cule	(B)	Mass of the	molec	ule
	(C)	Mass/Charge	ratio		(D)	None of the	above	
41.	This I	polysaccharide	is of r	nicrobial origii				
	(A)	Guar gum				Gum tragac		
	(C)	Xanthan			(D)	Gum karaya	1	
42.		esins are obtain			346	32 93	255	
	(A)	Oilseeds	(B)	Oils	(C)	Seeds	(D)	Spices
13	е							
43.		ing takes longe						
	(A) (B)			ty of ice is mo is than that of I			d wate	r
	(C)	1948 - 1948 - 194		is less than the	- 10 million - 10			
	(D)	All the above		15 ICSS THAT THE	u 01 ii	quiù water		
	(12)	in the above						
44.	This	water is most su	uitable	for carbonatio	on of b	everages :		
	(A)	Soft water			(B)	<u>7</u> 2		
	(C)	Medium hard			(D)	Very hard		
						17		
45.	The c	olour of black	tea is o	due to				
	(A)	Oxidation of	carbol	nydrates	(B)	Oxidation o	f lipid	s
	(C)	Oxidation of	chloro	phyll	(D)	None of the	above	
Set -	A				6			
Det.								

46.	Efflu	ent from this industry will have ma	vimun	BOD ·
-	(A)	Orange juice processing	(B)	
	(C)	Bread processing	11.53	Black tea processing
47.	Paste	urization of milk is achieved by he	ating	
	(A)	72 °C for 15 seconds	(B)	72 °C for 30 seconds
	(C)	82 °C for 15 seconds	(D)	82 °C for 30 seconds
48.	This	polymer is biodegradable :		
	(A)	Polypropylene	(B)	Polyester
	(C)	Polylactic acid	(D)	Polyvinyl chloride
49.	This	packaging material would have low	est W	VTR :
	(A)	Paper (B) Glass	(C)	Polyethylene (D) Polyester
50.	Saue	rkraut is a type of		
	(A)	Meat	(B)	Fermented cabbage
	(C)	Fermented cereal based product	(D)	Wine
51.	Mayo	onnaise is an emulsion of the type		
	(A)	Water-in-oil	(B)	Oil-in-water
	(C)	Water-in-oil-in-water	(D)	Oil-in-water-in-oil
52.	The r	heological behaviour of tomato ket	chup is	5
	(A)	Newtonian	(B)	Dilatant fluid
	(C)	Pseudoplastic fluid	(D)	Bingham plastic
53.	This	spectrophotometry is used for analy	sis of	minerals
	(A)	Flame spectrophotometer		
	(B)	Mass spectrophotometer		
	(C)	Atomic absorption spectrophoton	neter	
	(D)	All of the above		
54.	Malto	odextrins are characterized in terms	of	
	(A)	Dextrinising Units	(B)	Dextrose Equivalent
	(C)	Dextrinising Equivalent	(D)	All of the above
Set -	A		7	

55.	The	minaints of Insul		tion is bused o			
55.	(A)	principle of lyopl Boiling of wat		upon is based o	(B)	Sublimation of wa	nt ar
	(C)	Freezing of wat			(D)		ater
	(C)	Freezing of wa	iter			An of the above	
56.	Goss	ypol is a toxic co	onstit	uent in this oil	ţ		
	(A)	Groundnut	(B)	Rapeseed	(C)	Cottonseed (D)	Jatropa
57.	This	is an assay for a	niox	idant activity :			
	(A)	DPPH assay	(B)	FRAP assay	(\mathbb{C})	ABTS assay (D)	All of these
58.	Ohve	oil is a rich sou	rce o	f			
	(A)	Polyunsaturate	ed fat	ty acids	(B)	Saturated fatty ac	ids
	(C)	Monounsatura	ted f	atty acids	(D)	None of the above	2
59.	The t	pioactive nutrace	utica	l component p	resent	in rice bran oil is	
	(A)					Phytosterols (D)	Oryzanol
60.	A go	od frying oil sho	uld h	lave			
	(A)	Low smoke po	oint a	nd low flash po	oint		
	(B)	High smoke po	oint a	and high flash j	point		
	(C)	Low smoke po	oint a	nd high flash p	oint		
	(D)	High smoke po	oint a	and low flash p	oint		
61.	Soda	im nitrite in mea	t pro	cessing brings	about		
	(A)	Formation of r	itros	amine			
	(B)	Retention of co	oloui				
	(C)	Inhibition of C	losti	<mark>idium b</mark> otulinu	m		
	(D)	All of the abov	ie				
62.	As co	ompared to cocor	nut o	il. grou <mark>ndnu</mark> t o	il has		
	(A)	Low saponific	ation	value and low	iodin	e value	
	(B)	High saponific	ation	n value and hig	h iodi	ne value	
	(C)	High saponific	ation	n value and low	iodin	ie value	
	(D)	Low saponific	ation	value and high	n iodir	ie value	

Set - A

1

8

63.	Vitan	nins not presen	t in pla	ant foods are					
	(A)	Vitamins A,			(B)	Vitamins A,	K and	B,	
	(C)	Vitamins A,	D and	B ₁₂		Vitamins D,		121	
~ •									
64.		iylase cleaves :			(0)	11.51.57		A.B C.L	
	(A)	Glucose	(B)	Maltose	(C)	Limit dextri	n(D)	All of these	
65.	These	e amino acids g	tive a	yellow colour o	on read	tion with anil	ine hy	drogen phthalate :	
	(A)	Proline and y	aline		(B)	Valine and h	ydrox	yproline	
	(C)	Leucine and	prolin	e	(D)	Proline and	hydro	xyproline	
66.	This	polysaccharide	is a p	olymer of galct	uronk	acid :			
	(A)	Cellulose		Chitin		Pectin	(D)	Amylopectin	
	101 01								
67.	The l	imiting amino	acid in	cereals is :					
	(A)	Lysine	(B)	Methionine	(C)	Valine	(D)	Leucine	
68.	This p	protein is a tra	nsport	protein t					
	(A)	Collagen	(B)	Hemoglobin	(C)	Hordein	(D)	Glycoprotein	
69.	This a	amino acid is p	recurs	or of niacin					
	(A)	Tyrosine	(B)	Methionine	(C)	Tryptophan	(D)	Arginine	
70.	This :	amino acid is t	he pre	cursor of ethyle	ene in	fruits :			
	(A)	Cystine		Valine		Histidine	(D)	Methionine	
71.	Deater		1	imed to inhibit					
/1.	(A)	Racillus subt		imed to innibit		e 1 . 11 .			
	(A) (C)	Mycobacteri		arentariz	(B)	Salmonella 1 Vibrio chole	10-	urtum	
	(0)	Myc obacteri		ere mosts	(1)	VIDITO CHOIC	Tue		
72.	Durir	ng cooking, ric	e unde	rgoes					
	(A)	Hydrolysis o	f starc	h	(B)	Gelatinizatio	on of s	starch	
	(C)	Retrogradati	on of s	tarch	(D)	All of the ab	ove		
Set -	· A				9				FT

73.	The t	exture in jams	is due	to				
	(A)	Pectin and su	gar		(B)	Pectin and a	cid	
	(C)	Sugar and act	id		(D)	All the three	e as ab	ove
74.	A ph	ospholipid pres	ent in	egg yolk is				
	(A)	Phytosterol	(B)	Cholesterol	(C)	Lecithin	(D)	All of these
75.	This	polysaccharide	is pre:	sent in the exo	skeleta	on of prawns	and cr	abs :
	(A)	Pectin	(B)	Chitin	(C)	Chitosan	(D)	Cellulin
76.	Seco	ndary structure	of a p	rotein is due to				
	(A)	Hydrogen bo	nds		(B)	Peptide bon	ds	
	(C)	Hydrophobic	assoc	iations	(D)	All of the at	ove	
77.	The o	leficiency of th	is vita	min is respons	ible fo	r megaloblast	ic ane	mia
	(A)	Folic acid	(B)	B ₆	(C)	B ₁₂	(D)	All of these
78.	Acid	insoluble ash ii	n flour	is an indicatio	on of			
	(A)	Flour is conta	minat	ed with micro	organi	sms		
	(B)	Flour is made	from	sprouted when	at			
	(C)	Flour is made	from	wheat not clea	ned p	roperly		
	(D)	All of the abo	ove					
79.	This	is an indicator of	of inse	ct infestation i	n cere	al and legume	e flour	s :
	(A)	Uric acid	(B)	Citirc acid	(C)	Acetic acid	(D)	All of these
80.	In ve	getables like ok	ara or	'bhendi', the n	wcilag	e is made up	of	
	(A)	Glucose and	manno	ose	(B)	Galactose at	nd mai	nnose
	(C)	Glucose and	galacto	ose	(D)	All of the ab	ove	
81.	This	mineral is asso	ciated	with goiter				
	(A)	Calcium	(B)	Sodium	(C)	Iodine	(D)	Magnesium
82.	The a	stringency in to	ea is al	ttributed to				
	(A)	Proteins	(B)	Carbohydrate	es(C)	Polyphenols	(D)	All of these
Set -	A				10			

83.	This	can work as a c	ocoa ł	outter substitut	e :			
	(A)	Coconut oil			(B)	Hydrogenatt	ed ve	getable fat
	(C)	Mango kernel	l fat		(D)	All of the ab	ove	
84.	This	starch has the b	iggest	size among th	e follo	owing :		
	(A)	Rice	(B)	Wheat	(C)	Potato	(D)	Corn
85.	A dia	betic would be	nefit n	nost from				
	(A)	Food having	low G	I	(B)	Food having	low o	cholesterol
	(C)	Food having	ow so	dium	(D)	All of the ab	ove	
86.	Ajino	moto is chemic	ally					
	(A)	Monosodium	aspar	tate	(B)	Monosodiun	n glut	amate
	(C)	Disodium asp	artate		(D)	Disodium gl	utama	ate
87.	Amo	ng the following	g. this	is the richest	source	of vitamin C		
	(A)	Orange juice	(B)	Amla juice	(C)	Grape juice	(D)	Litchi juice
88.	The h	ydrocolloid she	owing	maximum hys	steresis	s is :		
	(A)	Gelatin	(B)	Alginate	(C)	Agar	(D)	Starch
89.	Tetra	pyrrole structur	e is co	ommon betwee	en			
	(A)	Chlorophyll a	ind lyc	opene	(B)	Haemoglobi	n and	lycopene
	(C)	Chlorophyll a	nd ha	emoglobin	(D)	All of the ab	ove	
90.	The c	o-factor for the	enzyı	ne polypheno	l oxida	se is		
	(A)	Magnesium	(B)	Iron	(C)	Zinc	(D)	Copper
9 1 .	Cons	tituents involve	d in th	e formation o	f nitro:	samines are		
	(A)	Amino acids	and ni	trate	(B)	Secondary a	mines	and nitrate
	(C)	Secondary an	nines a	and nitrite	(D)	Amino acids	and 1	nitrite
92.	Vitan	nin involved in	synthe	esis of collage	n is			
	(A)	Pantothenic a	cid		(B)	Folic acid		
	(C)	Vitamin C			(D)	Riboflavin		
Set -	A				11			

- 93. Amino acids essential for infants are
 - (A) Arginine and methionine (B) Histidine and methionine
 - (C) Arginine and histidine (D) Arginine, methionine and histidine

94. The amino acids vital in functionality of gluten are

- (A) Lysine and cysteine (B) Cysteine and cystine
- (C) Cystine and lysine (D) All the three as above

95. Hydrocolloid showing thermally reversible, transparent and elastic gel is

(A) Agar (B) Gelatin (C) Carrageenan (D) Starch

96. Hydrocolloid having maximum solubility in water

(A) Guar gum (B) Gum Arabic (C) Gum karaya (D) Gum tragacanth

97. This chromatography is generally used for analysis of fatty acid composition in foods

- (A) High Pressure Liquid Chromatography
- (B) Gas Chromatography
- (C) Thin Layer Chromatographty
- (D) Supercritical Fluid Chromatography
- 98. The vitamin injected in newborns is
 - (A) Vitamin C (B) Vitamin B, (C) Vitamin K (D) Vitamin A
- Glycaemic index is a measure of the amount of glucose released postprandial and is likely to be least affected by
 - (A) Carbohydrate type or content in food
 - (B) Fat content in food
 - (C) Soluble fiber content in food
 - (D) Mineral content in food

Set - A

12

100. The objective of termenting a food substrate is to

- (A) Improve the sensory properties of the food
- (B) Increase the nutritional quality of food
- (C) Extend the storage period
- (D) All of the above
- 101. Food safety and Standards Act, 2006 contains _____ number of chapters.

(A) AII (B) AI (C) VIII (D)	(A) XII (B) XI	(C) VIII	(D) 2
-----------------------------	----------------	----------	-------

102. NABL stands for

- (A) National Analytical Board for Laboratories.
- (B) National Accreditation Board for Testing and Calibration of Laboratories
- (C) National Accreditation Board for Testing and Certification of Laboratories
- (D) National Analytical Board for Testing and Calibration of Laboratories
- 103. If the test reports for the sample of analysis are found to be at variance, then designated officer shall send one part of sample to

(A)	Referral Laboratory	(B) Food Analyst
-----	---------------------	------------------

- (C) FSSAI (D) Central Laboratory
- 104. The ______ on the application of Sanitary and Phytosanitary Measures and on Technical Barriers to Trade (SPS and TBT Agreements) both encourage the international harmonization of food standards.
 - (A) Uganda Round Agreement (B) Uruguay Round Agreement
 - (C) Zurich Round Agreement (D) India Round Agreement

105. Codex Alimentarius Commission was created by joint efforts of

(A) WHO and World Bank (I	B) W	VHO and	FAO
---------------------------	------	---------	-----

- (C) WHO and FOO (D) WHO and FSO
- 106. The work required for crushing material is proportional to the logarithm of the ratio between the initial and final diameters according to

13

(A)	Rittinger's law	(B)	Kick's law
-----	-----------------	-----	------------

(C)	Bond's law	(D)	Boyle's law

Set - A

- 107. In Constant rate filtration
 - (A) Δ P is minimum at start and maximum at the end of the filtration run.
 - (B) Δ P is constant throughout the run.
 - (C) ΔP is maximum at start and minimum at the end.
 - (D) Independent of ΔP .

108. Filter aid is used to

- (A) increase the filtering efficiency
- (B) decrease the filtering efficiency
- (C) give body to the filtrate
- (D) increase the mass of cake
- 109. A multiple effect evaporator has a capacity to process 400 kg of concentrated juice per day when it is concentrating from 10 % to 25% solids. The water evaporated kg per day is
 - (A) 600 (B) 2400 (C) 6000 (D) 1600
- 110. The moisture content in excess of equilibrium moisture content is called
 - (A) Saturated moisture (B) Free moisture content
 - (C) Specific moisture content (D) None of the above

111. Which of the following is variable area meter ?

- (A) Venturi meter (B) Rota meter
- (C) Orifice meter (D) All of the above
- The ratio of vapour pressure of A to vapour pressure of B is called as _____ of A with respect B.
 - (A) Volatility (B) Diffusivity
 - (C) Relative volatility (D) Relative diffusivity
- 113. As per Stephan Boltzmann law the total energy emitted by a black body directly proportional to fourth power of its
 - (A) Surface area (B) Emissive power
 - An absolute temperature (D) Energy

Set - A

(C)

14

114.	SI uni	t of overall he	at trans	fer coeffici	ient is				
	(A)	$W/(m^2 K)$	(B)	$(m^2 K)/W$	(C)	Wm ² K	(D)	W K/m ²	
115.	Dew p	oint is the ten	nperatu	re at which	the				
	(A)	Boiling occu	гs		(B)	Evaporatio	on occur	rs	
	(C)	Condensation	n occui	5	(D)	Freezing o	occurs		
116.	Natura	al convection i	is chara	icterized by	(
	(A)	Grashof num	ber		(B)	Peclet nun	nber		
	(C)	Reynolds nur	mber		(D)	Prandtl nu	mber		
117.	What	is the effect of	f the bo	oiling point	elevation	in multiple	effect e	evaporators '	
	(A)	Reduce the c	apacity		(B)	Reduce the	e econo	my	
	(C)	Increase the	econor	ny	(D)	Increase ca	apacity		
118.	Which of the following laws is associated with the amount of crushing energy required to create new surface ?					required to			
	(A)	Kopp's law			(B)	Fourier's l	aw		
	(C)	Fick's law			(D)	Rittinger's	law		
	6					11.1			
119.	Const	ant rate period		10 17 18					
	(A)	The moisture							
	(B) The rate of vaporization per unit of drying surface area is constant								
	(C) The rate of vaporization increase with time								
	(D)	The rate of v	aporiza	tion decrea	ise with th	ne time			
120.	The ar	ngle formed by	v pouri	ng a powde	er as heap	on a flat su	rface is	known as	
	(A)	Contact angle		0-1	(B)				
	(C)	Angle of repo				Critical an			
		27 (JA)							

Set - A

15

SPACE FOR ROUGH WORK

Set - A

16

FOOD TECHNOLOGY (FT) SET-A

Question No	Answer	Question No	Answer
1	в	61	D
2	в	62	D
3	с	63	С
4	В	64	D
5	в	65	D
6	С	66	С
7	A	67	A
8	в	68	В
9	D	69	C
10	С	70	D
11	С	71	С
12	8	72	В
13	C	73	D
14	В	74	С
15	В	75	в
16	С	76	A
17	D	77	C
18	A	78	C
19	A	79	А
20	В	80	В
21	С	81	C
22	C	82	C
23	8	83	C
24	В	84	C
25	C	85	А
26	C	86	В
27	В	87	В
28	В	88	C
29	C	89	C
30	A	90	D
31	С	91	С
32	C	92	С
33	D	93	C
34	в	94	В
35	в	95	в
36	С	96	в
37	C	97	В
38	C	98	С
39	A	99	D
40	C	100	D

NOTE: The Information provided here is only for reference. It may vary the Original

AP PGECET Food engineering 2016 question paper-17

www.entranceexams.io

41	С	101	А
42	D	102	В
43	с	103	A
44	A	104	В
45	С	105	В
46	В	106	В
47	A	107	A
48	С	108	A
49	В	109	А
50	В	110	В
51	A	111	В
52	D	112	С
53	С	113	С
54	В	114	C
55	В	115	С
56	С	116	Α
57	D	117	A
58	с	118	D
59	D	119	в
60	в	120	С