Set Code :	T2
Booklet Code :	A

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(MIN) "MINING ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(MIN)

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- (1) 3I
- (2) 91
- (3) 271
- 2. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

1. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 (2) 2
- (3) 3

- 5. The solution of a system of linear equations 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, v = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, v = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A =______, B =______.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A,
- (2) 2A
- (3) 4A
- (4) 4A,

- The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π (4) 4π
- If $A+B=45^{\circ}$, then $(1-\cot A) \cdot (1-\cot B)$ is
 - (1) 1
- (2) 0
- (3) 2
- (4) -1

- 10. The value of $\sin 78^{\circ} + \cos 132^{\circ}$ is
 - (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

 The value of Tan⁻¹ (2) + Tan⁻¹ (3) 	5) 18
--	-------

- (1)
- (2)

14. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2
- (2) Δ⁻²
- (3) Δ⁻³
- (4) Δ⁴

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$ (2) $\cos^{-1}(2/5)$ (3) $\cos^{-1}(7/9)$
- (4) $\cos^{-1}(1/3)$

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0 (3) 7y+8=0.
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is (1) c = a/m (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3
- (2) 2
- (3) 4
- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$
- (2) $\pi/4$
- (3) $i\pi/2$
- (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

Set Code : Booklet Code :

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$
- (4) $\sqrt{\frac{x}{v}}$

The derivative of e^x with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$
- (4) $\sqrt{x}.e^x$

The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is (1) x + 20y = 99 (2) x + 20y = 101 (3) x - 20y = 99 (4) x - 20y = 101

The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$ (2) $\tan^{-1}(2)$ (3) $\tan^{-1}(3)$
- (4) $tan^{-1}(4)$

35. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$ (1) $6(x^3+y^3)$ (2) $6x^3y^3$ (3) $6x^3$

 $\int \csc x \, dx =$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

(1)
$$\frac{256}{693}$$

(1)
$$\frac{256}{693}$$
 (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

(3)
$$\frac{\pi}{4}$$

$$(4) \quad \frac{128}{693}$$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(3)
$$n[f(x)]^{n-1} + C$$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$
 (2) $2Tan^{-1}(\sqrt{x+6})+C$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+r^2}+C$$

(3)
$$x^2 . Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1 + x^2} + C$$

41.
$$\int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(4) $e^x + C$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + 0$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3 (4) 2
- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

- (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

Set Code :	T2
Booklet Code :	A

PHYSICS

51.	fore	ce. The dimension	ns of E	related by the rel 3 will be	ation	A/B = m where m	is lin	ear mass density and A is
	(1)	same as that of	latent	heat	(2)	same as that of	press	ure
	(3)	same as that of	work		(4)			
52.		dimensional for			terms	of M, L, T and I	is	
	(1)	$[ML^2T^2I^2]$	(2)	$[ML^{-2}T^4I^2]$	(3)	$[M^{-1}L^3T^3I]$	(4)	$[M^{-1}L^{-2}T^4I^2]$
53.		m and n are the d						
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1
54.	The	angle between i+	j and j	+k is				ě
	(1)	0°	(2)	90°	(3)	45°	(4)	60°
55.	A pa	article is moving of northwards. Th	eastwa ne ave	ards with a veloc rage acceleration	ity of	5 ms ⁻¹ . In 10 sec is time is	onds	the velocity changes to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	s nortl	n-west	(2)	zero		
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	s nort	th-east
56.	The corre	linear momentum	ofap	particle varies wi	th tim	e t as p = a + bt + a	ct² wh	nich of the following is
	/11	F						

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (4) 4v/3

Set Code :	T2
Booklet Code :	

58.	The	velocity of a fr	eely fal	ling body af	ter 2s is				
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.		arge number of b ground on whic				s with the same	speed u	. The maxim	um area on
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.		minimum stopp coefficient of fr	_			_		d v along a le	vel road, if
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	8 9
61.	When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts								
	(1)	In the backwar	rd direc	tion on the fr	ont wheel	and in the forv	ward dire	ection on the	rear wheel
	(2)	In the forward	direction	on on the from	nt wheel a	nd in the backy	vard dire	ection on the	rear wheel
	(3)	In the backwar	rd direc	tion on both	the front a	and the rear wh	eels		
	(4)	In the forward	directi	on on both th	e front an	d the rear whe	els		
62.	In a	perfectly inelas	tic colli	ision, the two	bodies				
	(1)	strike and expl	ode ·		(2)	explode with	out striki	ng	
	(3)	implode and ex	cplode		(4)	combine and	nove to	gether	
63.	Und	er the action of	a consta	ant force, a p	article is e	experiencing a	constan	t acceleration	, then the
	(1)	zero			(2)	positive			
	(3)	negative		Ø .	(4)	increasing uni	formly	with time	

(4) 10s

			Bookle
64.	Con	asider the following two statements:	
	A:	Linear momentum of a system of particles is zero.	
	B:	Kinetic energy of a system of particles is zero.	

Then
(1) A implies B & B implies A
(2) A does not imply B & B does not imply A
(3) A implies B but B does not imply A
(4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

(3) 8s

66. If a spring has time period T, and is cut into *n* equal parts, then the time period will be

(1) $T\sqrt{n}$ (2) $\frac{T}{\sqrt{n}}$ (3) nT (4) T

67. When temperature increases, the frequency of a tuning fork

(2) 5s

(1) increases

(1) 4s

- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(1) $2\pi\sqrt{\alpha}$ (2) $2\pi\alpha$ (3) $\frac{2\pi}{\sqrt{\alpha}}$ (4) $\frac{2\pi}{\alpha}$

A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds.
 The total absorption in the hall should be

(1) 850 w-m^2 (2) 82.50 w-m^2 (3) 8.250 w-m^2 (4) 0.825 w-m^2

70.	To a	bsorb the sound	in a ha	all which of the	follow	ing are used			
	(1)	Glasses, stores				Carpets, curta	ins		
	(3)	Polished surfa	ces		(4)	Platforms			
71.	IfN	represents avag	adro's	number, then th	e numi	per of molecules	s in 6 gr	m of hydrogen at NTP is	
		2N		3N	(3)		_	N/6	
72.	. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is								
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.		amount of heat		o a body which	raises i	its temperature	by 1°C		
	(1)	water equivaler	nt		(2)	thermal heat capacity			
	(3)	specific heat			(4)	temperature gr	adient		
74.		ing an adiabatic		187 (0.00)		s is found to be	propoi	rtional to the cube of its	
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	$\frac{5}{3}$	
75.	Clad	ding in the option	cal fibe	er is mainly used	d to				
	(1)	to protect the f	iber fr	om mechanical	stresse	es			
	(2)	to protect the f	iber fr	om corrosion					
	(3)	to protect the f	iber fr	om mechanical	strengt	th			
	(4)	to protect the f	iber fr	om electromagi	netic gi	iidance			
					13-A				

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phospho	orous atom (At.)	No. 15) is	
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	$3s^2 3p^2 3d^1$	(4)	3s1 3p2 3d2	
77.	And	element 'A' of A	t.No.12	2 combines wit	h an elei	nent 'B' of At.N	0.17.	The compound formed is	
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB	
78.	The	number of neut	rons p	resent in the at	om of 56	Ba ¹³⁷ is			
	(1)	56	(2)	137	(3)	193	(4)	81	
79.	Hyd	rogen bonding	in wate	er molecule is r	esponsi	ble for			
	(1) decrease in its freezing point					increase in its degree of ionization			
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point	
80.	In th	ne HCl molecule	e, the be	onding betwee	n hydrog	gen and chlorine	is		
	(1)	purely covaler	nt (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	
81.	Pota	assium metal an	d potas	sium ions					
	(1)	both react with	water		(2)	have the same number of protons			
	(3)	(3) both react with chlorine gas				have the same	electro	onic configuration	
82.	stan	dard flask. 10 ml	ofthis	solution were p	oipetted o		lask ar	made upto 100 ml in a nd made up with distilled solution now is	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
83.	Con	centration of a	1.0 M s	olution of pho	sphoric	acid in water is			
		0.33 N	(2)	1.0 N	-	2.0 N	(4)	3.0 N	
84.	Whi	ch of the follow	ing is a	Lewis acid?					
	(1)	Ammonia			(2)	Berylium chlor	ride		
	(3)	Boron trifluor	ide		(4)	Magnesium ox	ide		
					14-A	2014			

Set Code :	T2
Booklet Code :	A

85.	Which of the following constitutes the components of a buffer solution?									
	(1) Potassium chloride and potassium hydroxide									
	(2)	Sodium acetat								
	(3)	Magnesium su	lphate	and sulphuric aci	id					
	(4)	Calcium chlor	ide and	d calcium acetate						
86.	Whi	ich of the follow	ing is	an electrolyte?						
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine		
87.		culate the Stand		of the cell, Cd	//Cd+2	//Cu ⁺² /Cu given	that E	$E^0 \text{ Cd/Cd}^{+2} = 0.44 \text{ V}$	and	
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V		
88.	A so	olution of nickel	chlori	de was electroly	sed us	sing Platinum el	ectrod	es. After electrolysi	s,	
	(1)							ted at the cathode		
	(3)							ted on the cathode		
89.	Whi	ich of the follow	ing me	etals will undergo	oxid	ation fastest?				
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron		
90.	Whi	ich of the follow	ing ca	nnot be used for	the ste	erilization of drin	nking	water?		
	(1)	Ozone			(2)	Calcium Oxycl	hloride	e		
	(3)	Potassium Chi	loride		(4)	Chlorine water				
91.	Aw	ater sample sho	wed it	to contain 1.20 m	g/litro	e of magnesium s	sulpha	te. Then, its hardnes	s in	
	term	ns of calcium can	rbonate	e equivalent is						
		1.0 ppm		1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm		
92.	Sod	a used in the L-S	Sproce	ess for softening	of wa	ter is, Chemicall	y.			
	(1)	sodium bicarbo	onate		(2)	sodium carbon	ate dec	cahydrate		
	(3)	sodium carbon	ate		(4)	sodium hydrox	ide (4	0%)	.0	
93.	The	process of ceme	entation	n with zinc powd	er is k	known as		20		
		sherardizing	(2)	zincing	(3)	metal cladding	(4)	electroplating		
					15-A					

94.	Carr	rosion of a metal is fastest in		
74.	(1)		r(3)	distilled water (4) de-ionised water
	(1)	Tam-water (2) desidanted water	(5)	distinct valer (1) de foiliset valer
95.	Whi	ch of the following is a thermoset poly	mer?	
	(1)	Polystyrene	(2)	PVC
	(3)	Polythene	(4)	Urea-formaldehyde resin
				*
96.	Che	mically, neoprene is		
	(1)	polyvinyl benzene	(2)	polyacetylene
	(3)	polychloroprene	(4)	poly-1,3-butadiene
97.	Vulc	anization involves heating of raw rubbe	r with	
	(1)	selenium element	(2)	elemental sulphur
	(3)	a mixture of Se and elemental sulphur	(4)	a mixture of selenium and sulphur dioxide
98.	Petro	ol largely contains		
	(1)	a mixture of unsaturated hydrocarbons	C ₅ -(C ₈
	(2)	a mixture of benzene, toluene and xyle	ene	
		a mixture of saturated hydrocarbons C		4
	(4)	a mixture of saturated hydrocarbons C	$_6$ - C_8	¥
99.		ch of the following gases is largely resp		
		SO ₂ & NO ₂		CO ₂ & water vapour
	(3)	CO ₂ & N ₂	(4)	N ₂ &CO ₂
100.		stands for		
	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen Demand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen Demand

Set Code :	T2
Booklet Code :	

MINING ENGINEERING

			17-A				14	MIN)
	(3)	0.3	(4)	0.2				
	(1)		(2)					
107.	Reli	eving hole should be drilled at	least m aw	ay fro	om the mis	fired hole in	n the under gro	und.
	(3)	13.20.03	(4)	05.1	5.20			
	. ,	15:20:65	, ,	65:1				
		20:15:65			55:15			
106.	The	constituents in slurry explosive	e (TNT : AN: \	Vater')			
	(3)	3500 m/s	(4)	3200	0 m/s			
	(1)	5000 m/s	(2)	7000	0 m/s			
105.	The	Velocity of detonation of pren	nix cartridge is					
	(3)	cementation method	(4)	free	zing metho	od		
		German tubing	(2)		ed drop			
104.	The is	method of sinking adopted in ur	nstable or friab			avy inrush o	f water encount	ered
	(3)	detaching hook	(4)	ride	r			
	(1)	spider	(2)	kibb	le			
103.	The	following safety device is pro-	vided in sinkin	g sha	ft in case o	of overwind	I	
	(3)	3	(4)	4		18		
	(1)	1 =	(2)					
102.	Bore	e hole deviation is deg	grees for 30 m.	Č.				
	(3)	40		(4)	54			
	(1)			(2)	28			
101.		core (dia in mm) size obtained	with NX size	11222111				

Set Code:	T2
Booklet Code :	A

108.	The	pattern of cut mostly preferred for la	minated	d strata is		
		Ring drilling (2) fan cut		pyramid cut	(4)	burn cut
109.	To g	et lumpy coal or to minimize the coal	dust th	e blasting techn	ique ac	dopted is
	(1)	cushion blasting	(2)	muffled blastin	ng	
	(3)	coyote blasting	(4)	pop shooting		
110.	In ro	of stitching the face should not be ad-	vanced	more than	m fron	n the last tensioned rope
	(1)	4 m (2) 3 m	(3)	2.4 m	(4)	2 m
111.	In sa	nd stowing incorrect profile will lead	ls to			
	(1)	cavitations	(2)	wear on pipes		t
	(3)	setup pulsation	(4)	jamming		72
112.	Ring	rose detector works on the principle	of			
	(1)	Formation of gas cap	(2)	Wheatstone br	idge	
	(3)	Diffusion-combustion-contraction	(4)	Optical proper	ties	
113.	The	elements in the delay element of shor	t delay	detonator		
	(1)	Antimony and potassium permangan	17.3			
	(2)	Red lead and silicon				19
	(3)	silicon and Antimony				×
	(4)	PETN and ASA		e.		
114.	Cone	sheets are				
	(1)	Sills	(2)	Dykes		
	(3)	folds	(4)	faults		

Set Code :	T2
Booklet Code :	A

115.	Stoc	cks of circular out crop, upon the surfa	ace are	known as
	(1)	Volcanic necks	(2)	Lopoliths
	(3)	Laccoliths	(4)	Bosses
116.		upper portion of regolith, under suita		287,2870
	(1)	Sand (2) Alluvial	(3)	Silt (4) Soil
117	Grai	nulite is a		
11/.	(1)	Plutonic Rock	(2)	Sedimentary rock
	(3)		(4)	Igneous rock
	` '	***************************************		18
118.	The	following is NOT a process of erosion	n cause	d by blowing wind.
	(1)	denudation	(2)	deflation
	(3)	abration	(4)	attrition
119.	The	following is a process for formation	of Cany	von
		down cutting of a valley floor		over and side cutting the valley floor
	(3)	under cutting of a plateau floor	(4)	washing out the plateau floor
120	Class	uhania ara la mana sa		
120.	(1)	nbering volcano is also known as Active volcano	(2)	dormant volcano
			(4)	Stromboli volcano
	(3)	Extinct volcano	(4)	Strombon voicano
121.	Push	n waves of earth quakes are transmitte	d due t	o set up within the earth.
		Transverse vibration		Longitudinal vibrations
	(3)	Diagonal vibrations	(4)	Radial vibrations
212020				-
122.		e upper younger rocks spread coverin		
	(1)	Unconformity (2) joints	(3)	Inlier (4) Overlap

Set Code :	T2
Booklet Code :	A

								4	
123.	The	cuddapah system is	convex towards	s the	while its concavity lies towards the				
	(1)	East, West		(2)	West, East				
	(3)	North, South		(4)	South, North				
124.	Qua	rtz is a common gan	gue mineral ass	ociated v	with the ore mi	neral	348		
	(1)	Bauxite		(2)	Haematite	25.50			
	(3)	Chalcopyrite		(4)	Galena				
125.	Mol	ecular or even atom	ic substitution t	akes plac	ce in	process	S.		
	(1)			(2)	- 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	(3)	Metasomatic repla	cement	(4)					
126	The	average number of f	aces in a distric	t if numb	er of headings	are 'N'			
120.) 2(N-1)		2N-2	(4)	2(N-3)		
								: 10 000	
127.		a good sandstone ro sq.m if 3-4 sto			not more than _	sq.ı	n at one stoo	k extraction	
		20; 400			30; 600				
	(3)	40; 900		(4)	50; 900				
128.	Ina	seam with locomotiv	e haulage syste	m the iun	ctions with ma	ain head	ings are stag	gered	
		for easy travelling			to minimize				
		to reduce ventilation			to prevent the				
120	Eo.	dasianina nillana	ia waad				•		
129.		designing pillars	is used.	(0)					
		coward's diagram		(2)	proximate an	alysis			
	(3)	monographs		(4)	pentagraph				
					-				

Set Code :	T2
Booklet Code :	

130.		e depillaring is pr ibmerged in water				d seam inclinati	ion is r	not mild so	that goaf can
	(1)	Diagonal			(2)	Step diagonal			
	(3)	parallel to strike	e		(4)	Arrow head			
131.		face formed which		eveloped on bor	d and pi	llar method and e	extracti	ing in long	wall retreating
	(1)	Z shape face			(2)	Barry face			
	(3)	Bleeder road me	ethod		(4)	double unit fac	e		
132.	Road	lway reutilization	n is po	ossible in	_longw	all face.		19	
	(1)	Single unit			(2)	Double unit(ad	vancin	ng)	
	(3)	Zunit			(4)	retreating			
133.	(1)	ned slicing in de- less than 35° less than 45 and			(2)		inatio	n is	
134.	In re	spect of dipper sh	novel	"crowding" me	eans				
	(1)	raising bucket to	o dum	per height					
	(2)	Piercing the buc	cket in	nto broken min	eral				
	(3)	winging the buc	ket ro	und					
	(4)	moving the show	vel fro	om one place to	o anothe	er			
135.	Cho	ck shields can wo	ork in	steeply incline	d seams	up to maximun	n	deg.	
	(1)	45	(2)	60	(3)	70	(4)	85	
136.	Alin	nak raise climber	can b	e used only wh	nere inc	lination of the ra	aise fro	om horizo	ntal is
	(1)	10 deg	(2)	20 deg		30 deg	(4)		

Set Code :	T2
Booklet Code :	A

137.	Rais	ing by long hole	drilli	ng is limited to				6 . i
	(1)	10 to 15 m	(2)	15 to 50 m	(3)	50 to 100 m	(4)	100 to 120 m
138.					differe	nt sections to th	e lowe	r level and all the ore is
		ied to crusher at 1	owest	t level through				
	, ,	Mine tubs			(2)	Winzes		
	(3)	Ore passes		81	(4)	Hoists of smal	l capac	city
120	În v	artical crater retree	at me	ethod the enheri	cal cha	rges are used I	·D sho	uld not exceed is
139.			(2)		(3)		(4) .	
	(1)	1:4	(2)	4.1	(3)	0.1	(4).	1.0
140	The	mathod of stoning	r heet	suited to low or	ade der	osite of horizon	tal or n	nild dip and of thickness
140.		5 m is	goesi	suited to low gi	auc ucj	oosits of norizon	tai Oi II	ind dip and of uncideos
	(1)	Open stoping			(2)	Breast stoping		- a
	0.0	Sublevel stoping	g		(4)	Shrinkage stop	ing	
	` '		,					
141.	The	method of stoping	g, suit	able for thick or	e body	strong ore stable	e handi	ng and foot wall steeply
		ing ore is				200		
	(1)	Open stoping			(2)	Shrinkage stop	ing	
	(3)	Cut and fill stop	ing		(4)	Sublevel stopii	ng	
142.	The	method of stopin	g, sui	table for steeply	y dippi	ng reasonably f	irm ore	mixed graded ore with
	irreg	gular boundaries	and w	here ground su	rface is	to be protected	from s	subsidence is
	(1)	Open stoping			(2)	Shrinkage stop	ing	
	(3)	Cut and fill stop	ing		(4)	Sublevel stoping	ng	
								27 2
143.	The	dilution in sublev	el cav	ing is		(%)		
	(1)	10 to 35%		- 1	(2)	35 to 45%		
	(3)	45 to 60%			(4)	above 60%		

								Set Code: T2		
								Booklet Code : A		
144.	The	nethod of stoping	g, for and w	high grade ore v	vith wa	alls of the ore boor a week time is	dy and	back of the stope are so		
	(1)	Sublevel stoping			(2)	Shrinkage stop	ing			
	(3)	Square set stopi	ng		(4)	Cut and fill stop	ping			
145.	Reco	overy of ore by sl	hrink	age stoping, is						
	(1)	40 to 50%	(2)	50 to 60%	(3)	60 to 75%	(4)	75 to 90%		
						10		7 %		
146.		e centrifugal fan splace	smo	oth flow air and	conve	ersion of velocit	y ener	gy into pressure energy		
	(1)	In spiral casing			(2)	In the blades		18		
	(3)	At the tip of the	blade	es	(4)	In the evasee				
147.	The	maximum permi	ssible				100000			
	(1)	8000 m/min	(2)	6000 m/min	(3)	5200 m/min	(4)	4200 m/min		
148.		mine of high resi		e the series arra	ngeme	ent of fans gives	a cons	iderable increase in the		
	(1)	10%	(2)	20%	(3)	30%	(4)	40%		
149.	Onr	eversal of air cur	rent b	y axial flow fan	the qu	antity of air red	uces to)		
	(1)	20%	(2)	30%	(3)	40%	(4)	60%		
150.	If the	e booster is place								
	(1)	Leakage is max			(2)		Zone of recirculation takes place			
	(3)	Fan will damage	2		(4)	Leakage is min	imum			
		•						iei - *		
151.		ferometers work			(2)	NT	:			
	(1)	Formation of ga	is cap		(2)	Wheatstone br				
	(3)	Infra radiation			(4)	Optical proper	ties			

23-A

(MIN)

								Booklet Code :
152.	The	quantity of air to	be cir	culated by an a	uxiliary	fan depends u	pon	
		Lenght of the h				Number of pe		n the drift
	(3)	Size fo the drift	ft		(4)	Rate of emiss	ion in tl	he roadway
		9.0						
153.	The	coal is not liable	e to spe	ontaneous heati	ing if th	e coal has oxyg	gen con	tent
	(1)	less than 2%	(2)	4%	(3)	8%	(4)	more than 9%
		•	c					20
154.	-	tion temperature			(2)	(50 75000	(4)	750-1000°c
	(1)	250-350°c	(2)	350-650°c	(3)	650-750°c	(4)	/30-1000°C
155	For	coal dust explos	ion th	e quantity of co	val ie	g/m^3		
155.			(2)	1	(3)		(4)	40
	(1)	10	(2)	20	(3)	30	(4)	40
156.	Ноо	lamite is a mixt	ure of					
	(1)	Manganese die		coper oxide				•
	(2)	Potassium sup			e			
	(3)	Silica gel + pot						
	(4)	Iodine pentoxi		The State of the S		la la		
		15.1						
157.	The	CO ₂ absorbent u	used in	prototype brea	thing ap	paratus is		
	(1)	Calcium hydro	xide a	nd Sodium hydr	roxide			
	(2)	Calcium carbo	nate a	nd caustic soda		50		
	(3)	Sodium hydro:	xide ar	d caustic soda				14
	(4)	Calcium hydro	xide a	nd caustic soda	es.			
158.	The	minimum avera	ge lun	ens/sq.ft of ligh	ht at roa	dways is		
	(1)	1.5	(2)	1.25	(3)	0.4	(4)	0.9

								Set Code : T2
								Booklet Code : A
Γ								
159.	The							rea of not less than
	(1)	400 sq.m	(2)	355 sq.m	(3)	250 sq.m	(4)	155 sq.m
160.						y boring apparatu ne at a distance of		emergency shutoff door
	(1)	10 m	(2)	15 m	(3)	20 m	(4)	25 m
161.		ier is called		AND THE RESERVE TO TH				n of the main scale, the
	(1)	Microptic	(2)	Retrograde	(3)	Vertical vernier	(4)	Vernier difference
162.	The	accuracy of a cha	in su	vey is				
	(1)	1/250 to 1/100	0		(2)	1/125 to 1/249		
	(3)	1/25 to 1/100		14.5	(4)	.1/125 to 1/150		
163.	Whi	ch is the following	ng sca	le smallest one				
	(1)	1cm=10m	(2)	R.F=1/5000	(3)	1:10000	(4)	1cm=10km
164.	Ifth	e bearings of the	two li	nes AB and CB	are S4	5°E and N45°W,	then t	he angle ABC equals to
	(1)	90°	(2)	180°	(3)	135°	(4)	360°
165.	If th	e fore bearing of	f AB i	s N35°E, then t		bearing of BA is		
	(1)	N35°E	(2)	S35°W	(3)	S65°W	(4)	S35°E
166.	In su	ibtense method o	of tach	neometry i =	_			
	(1)	np	(2)	n/p	(3)	n+p	(4)	n-p ·
167.	The	correction for re	fracti	on is	_that o	f curvature and _		to the observed staff

(2) one-seventh, subtractive

(4) one-seven hundredth, additive

reading.

(1) one-seventh, additive

(3) one-seventeenth, additive

Set Code : T2	T2	Set Code :	
Booklet Code : A	A	Booklet Code :	

68.	Pern	nissible error in	under	ground leveling				9	
	(1)	2 cm per km	(2)	1 mm per km	(3)	4 cm per km	(4)	4 mm per km	
69.	The	following is NO	OT a fe	eature of tacheor	neter				
	(1)	the telescope s	hould	be powerful hav	ing m	agnifition of 20	to 30 c	diameters	
	(2)	the aperture of sufficiently bri			se 350	to 450 mm in d	iamete	er in order to have	е
	(3)	the magnifying clearer at a lon			ce sho	ould be greater t	o rend	er the staff grade	uati
	(4)	the telescope s	hould	be fitted with an	analy	tic lens.			
								10	
170.		e reading of the error knwon as	vernie	rs on the vertical	circle	is not zero when	n the li	ne of sight is hori	zon
	(1)	Residual error			(2)	Index error			
	(3)	graduation erro	or		(4)	Natural error		٠	
171.	The	upper plate of a	theod	lolite is fixed to					
	(1)	horizontal circ	le	42	(2)	inner spindle			
	(3)	outer spindle			(4)	vertical circle			
172.		length of long c	hord a	nd the tangent of	f a circ	ular curve of rac	lius R	will be equal if th	e an
	(1)	30°	(2)	60°	(3)	90°	(4)	120°	
173.	The	degree of accur	acy in	secondary trian	gulatio	on is			
		1 in 50000	(2)	1 in 5000	(3)	1 in 500	(4)	1 in 50	
174	Whe	ere entry to a mi	ne is g	ained by means	of a d	rift, correlation	is carri	ied out by	
	(1)				(2)	Alignment me			
×	(3)	Direct traversi		thod	(4)	Approximate a		ent method	
	(0)		6		26-A		· ·		(1
					40-A				4

						Set Code: T2	
						Booklet Code : A	
175.	Weis	bach method of	corre	ation is also kno	own as	S	
	(1)	Direct alignmen	nt met	hod	(2)	approximate alignment method	
	(3)	direct traversing	g meth	nod	(4)	Co-planning method	
176.	The	type of rope mos	t suita	ble for balancin	g rope	e in koepe winding is	
	(1)	Regular lay			(2)	Locked coil	
	(3)	Flattened strand	1		(4)	Spiral strand	
177.	Inter	nal stresses of th	e rop	e can be relieve	d with	the use of	
	(1)	Normalising the	e wire		(2)	Annealing the wire	
	(3)	Performed wire	:		(4)	Warrington pattern	
178.	The	exhaust gases fro	om the	engine amount	ing in	all to about cu.m per B.H.P per minute.	
	(1)	0.58	(2)	0.654	(3)	0.850 (4) 0.085	
179.	The	steepest gradient	in fa	vour of load in l	oco is	determined by	
	(1)	Tractive effort r	requir	ed	(2)	Load on the train	
	(3)	Braking effort			(4)	Drawbar pull	
180.	Whe	re the series of b	elt co	nveyors are use	d for t	transport of coal there shall be	
	(1)	Remote control	ı		(2)	Sequence control	
	(3)	Single point con	ntrol		(4)	Multipoint control	
181.	The	valve used for pr	iming	before start is			
	(1)	Foot valve			(2)	Retainning valve	
	(3)	Byepass valve			(4)	Sluice valve	
182.	The	pitch of the state	or is _	of the rote	or in ro	oto pump	
	(1)	equal	(2)	twice	(3)	thrice (4) 1/2	

27-A

(MIN)

Set Code :	T2
Booklet Code :	A

183. The	e rope used for track rope in aerial ro	pe way i	s	
	Locked coil	(2)	Lang's lay	
(3)	Regular lay	(4)	Flattened strand	
184. The	e electric dill is capable of drilling	holes	each 1.5 m depth	in 8 hours shift
(1)		(3)		(4) 100
185. The	cutting unit of continuous miner of	borer typ	e the gearing is	
(1)	Compound wheel type	(2)	Spur gearing	
(3)	Bevel type	(4)	Sun and planet	8
186. The	power is supplied to the coal drill is	the		
(1)	5 core armoured cable	(2)	3 core armoured	cable
(3)	4 core screened cable	(4)	5 core screened	cable .
187. The	most common type of flame proof	protection	n is	
(1)	Hermitically sealed protection	(2)	Flange protectio	n -
(3)	Hinge protection	(4)	Open protection	
188. All	signaling apparatus in third degree g	assy coal	mine must be	(#)
(1)	Flame proof apparatus	(2)	Hermitically sea	led protection
(3)	Flange protection	(4)	Intrinsically safe	1.5
189. In k	oepe winding the over wind is preven	ited by	s.4	
(1)	Detaching hook	(2)	Automatic contri	vances
(3)	Convergence of the guides	(4)	Safety book	

Set Code :	T2
Booklet Code :	A

190.	. The pit top and pit bottom arrangement which deals with reasonable output per month and occupies less space is									
	(1)	Run round arran	geme	nt	(2)	Back shunt circuit				
	(3)	Turn table circu	it		(4)	Traverse circuit				
							-			
191.	If the	number of perso	ns en	ployed in the mi	ne is 5	5000 then the qua			1 is	
	(1)	10000 lit	(2)	5000 lit	(3)	25000 lit	(4)	1500 lit		
192.						or manager of mi	ages		notice	
	(1)	20th Feb	(2)	1st Jan	(3)	1st May	(4)	20th May		
193.		very mine emplo shall be provide				ns on any day of	the p	receding calend	ar year	
	(1)	50	(2)	100	(3)	150	(4)	250		
194.	Mine	rules comes int	o for	ce on						
	(1)	2 nd March 1955			(2)	2 nd July 1955				
	(3)	2 nd May 1955			(4)	2 nd January 1955	5			
195.						ation exceeds _ s shall be provid		from the horizon	ntal in	
	(1)		(2)		(3)		(4)	80°		
	(-)				()					
196.						urface feature w e workings meas				
	(1)	50 m	(2)	100 m	(3)	150 m	(4)	200 m		

Booklet Code: 197. Every detaching bell used in connection with a safety hook shall be examined once in every____ (1) 30 days (2) 3 months (3) 6 months (4) 12 months 198. Every stopping between the main intake and main return airway shall be constructed of masonary or brickwork not less than atleast in thickness. (1) 15 cm (2) 25 cm (3) 38 cm (4) 50 cm 199. Lockout shall not declare during a pending of conciliation proceedings before a conciliation board and before _____ after the conclusion of such proceeding. (1) 7 days (2) 14 days (3) 30 days (4) 40 days 200. Mining industry is organized by (1) Line organization (2) Function organization

(4) Staff organization

(3) Line and staff organization

Set Code :